Chevalley’s Theorem and Complete Varieties

نویسنده

  • BRIAN OSSERMAN
چکیده

Proof. Let f1, . . . , fm be generators of A(X) over A(Y ). Then the fi also generate K(X) over K(Y ), so we can reorder indices such that f1, . . . , fr are algebraically independent over K(Y ). Let R = A(Y )[f1, . . . , fr] ⊆ A(X). Since the fi are algebraically independent over K(Y ) they are algebraically independent over A(Y ), so R is isomorphic to an r-variable polynomial ring, which is to say that R ∼= A(Y × Ar). Then the inclusions A(Y ) ↪→ R ↪→ A(X) induce the desired factorization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Algebraic Semigroups and Monoids

We present some fundamental results on (possibly nonlinear) algebraic semigroups and monoids. These include a version of Chevalley’s structure theorem for irreducible algebraic monoids, and the description of all algebraic semigroup structures on curves and complete varieties.

متن کامل

A Modern Proof of Chevalley’s Theorem on Algebraic Groups

Let k be a field, and let G be an algebraic group over k, by which we mean a connected smooth k-group scheme (not necessarily affine). Recall that such a G is automatically separated, finite type, and geometrically integral over k [4, Exp VIA, 0.3, 2.1.2, 2.4]. The most important classes of algebraic groups are the affine algebraic groups (also called linear algebraic groups, since affine algeb...

متن کامل

On the Quantum Product of Schubert Classes

We give a formula for the smallest powers of the quantum parameters q that occur in a product of Schubert classes in the (small) quantum cohomology of general flag varieties G/P . We also include a complete proof of Peterson’s quantum version of Chevalley’s formula, also for general G/P ’s.

متن کامل

Smooth and palindromic Schubert varieties in affine Grassmannians

We completely determine the smooth and palindromic Schubert varieties in affine Grassmannians, in all Lie types. We show that an affine Schubert variety is smooth if and only if it is a closed parabolic orbit. In particular, there are only finitely many smooth affine Schubert varieties in a given Lie type. An affine Schubert variety is palindromic if and only if it is a closed parabolic orbit, ...

متن کامل

Reflection Quotients in Riemannian Geometry. a Geometric Converse to Chevalley’s Theorem

Chevalley’s theorem and it’s converse, the Sheppard-Todd theorem, assert that finite reflection groups are distinguished by the fact that the ring of invariant polynomials is freely generated. We show that in the Euclidean case, a weaker condition suffices to characterize finite reflection groups, namely that a freely-generated polynomial subring is closed with respect to the gradient product. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009